

BLACK LIQUOR CHAR REACTIVITY WITH CO₂ IN OXY-COMBUSTION CONDITIONS

Fernando L. Bueno¹

Antonio Monzon¹, Isabel Fonts¹, Jose Luís Sanchez¹, Markus Engblom², Emil Vainio², Patrik Yrjas²

¹University of Zaragoza

²Åbo Akademi University

Research Objectives

Investigate Char Reactivity in CO/CO₂ Atmospheres:

• Study the influence of varying CO and CO₂ ratios on gasification rates and thermal conversion behavior of black liquor char.

Assess Impact of Pyrolysis Conditions:

• Analyze how slow and fast pyrolysis affect char reactivity.

Development of a Kinetic model:

• Generate experimental data to be fed into a kinetic model to better understand the effects of the oxy-combustion conditions over the black liquor char.

Sample Preparation

Fast Pyrolysis Setup

Slow Pyrolysis Setup

Drying and Grinding of Black Liquor

• Black liquors were spread in thin layers and dried for 48 hours at 105°C, dried samples were finely ground and stored in sealed vials to avoid moisture uptake.

Char Production via Pyrolysis

- Pyrolysis was conducted using two heating regimes: slow and fast.
- Both processes used 90% N₂ and 10% CO as carrier gas.

Slow Pyrolysis Procedure

• Heated at 10°C/min to 900°C and held for 30 minutes.

Fast Pyrolysis Procedure

• Heated at 50°C/min to 900°C and held for 30 minutes.

Reactivity Experimental Setup

Fixed Bed Reactor Configuration

- Experiments conducted in a fixed bed ceramic reactor with 8 mm internal diameter.
- Reactor externally heated by an electric furnace.

Sample Feeding

- Approximately 25 mg of char loaded into the reactor.
- Char held in place by ceramic wool to ensure stable positioning.

Types of Experiments

Dynamic (IPL/IPR*)

- Li&Van Heiningen (5 15% CO)
- High CO2 concentration (40 90% CO₂)

Isothermal (IPL/IPR*)

- Li&Van Heiningen (5 15% CO)
- High CO2 concentration $(40 90\% \text{ CO}_2)^{**}$

Dynamic-Isothermal (IPL/IPR*)

^{*}IPR – Fast Pyrolysis Char

Dynamic Experiments Procedure

Temperature Range

• Final temperature preset to 900°C.

Gas Composition

- Initial gas: 90% N₂ and 10% CO.
- At 550°C, CO₂ introduced by partially replacing N₂.
- Final mixture adjusted progressively during the heating phase, reaching 5–20% CO₂ and 5–15% CO.

Dynamic Experiments – IPL/IPR

IPR Dynamic Experiments

 0.40_{I}

Exp DL3 -10% CO +5% CO₂

Exp DR1 – 10% CO + 20% CO₂ Exp DR2 – 10% CO + 13% CO₂

 $Exp DR3 - 10\% CO + 5\% CO_2$

Dynamic High CO₂ Experiments – IPL/IPR

Isothermal Experiments Procedure

Temperature Range

• Experiments conducted at constant temperatures between 800°C and 900°C.

Gas Composition

- Initial gas: 90% N₂ and 10% CO.
- CO₂ introduced after a 20-minute isothermal hold by displacing an equivalent amount of N₂.
- Final mixture: 5–20% CO₂ and 5–15% CO, balanced with N₂.

Isothermal Experiments – IPL/IPR

Exp IL1 -9% CO + 12% CO₂ Exp IL2 - 19% CO + 10% CO₂ Exp IL3 - 13% CO + 8% CO₂

Isothermal Experiments – Char Decomposition

Char Decomposition Solution

Dynamic/Isothermal Experiments – IPL/IPR

Parallel Kinetic Model - IPR

CO/CO2	0.25	0.77
% CO2	20	13
% CO	5	10
	Exp 66	Exp 67
k char_m (min-1)=	106.9206615	106.9206615
E_char(kJ/mol)=	130.0912659	130.0912659
K_CO2_m (min-1)=	135.1544088	135.1544088
Q CO2 (kJ/mol)=	140.1691242	140.1691242
K_CO char_m (min-1)=	95.37122132	95.37122132
Q_CO (kJ/mol)=	322.5874739	322.5874739
n char=	0.85943091	0.85943091
m0 char=	0.916043372	0.916043372
k 1_m (min-1)=	0.359596961	0.359596961
E1(kJ/mol)=	726.6695001	726.6695001
n 1=	1.521120641	1.521120641
m0 1=	0.052022348	0.052022348
k 2_m (min-1)=	0.14815184	0.14815184
E 2 (kJ/mol)=	446.2684654	446.2684654
n 2=	0.403818805	0.403818805
m02=	0.03193428	0.03193428

	0.25 20 5	0.77 13 10
	Exp 66	Exp 67
	M.H.	М.Н.
average value	0.055192061	0.051731887
SST	10.47668399	12.15457073
SSE	0.006585226	0.634209572
SSRE	5.77724E+16	8.56668E+16
R2	0.999436102	0.966940756
M.H. (SSE, SSRE)	0.013170451	1.268419145
MSC	8.335104291	3.615562287
MIC	13.25063241	8.609395629
SDE	0.001902457	0.019845893

MSC > 4.5

Parallel Kinetic Model – m C gasified

MSC 8.335104291 3.615562287

Next Steps and Conclusions

- Isothermal Experiments with High CO₂ concentration and Dyn/Iso with High CO₂ + N₂ experiments;
- Feed the kinetic model with experimental data to investigate the effects of Oxy-combustion on the reactivity of the black liquor char.
- The experimental results are still providing fundamental insights into black liquor char gasification and reactivity under oxy-combustion relevant conditions.
- The findings will help to better understand how temperature, CO₂ and CO affect gasification kinetics and char conversion behavior.
- The data will serve as a reliable basis for a development of a kinetic models in CFD simulations.
- Ultimately, these models could support the quantitative prediction of black liquor combustion in kraft recovery boilers operated under oxy-combustion, contributing to process optimization and decarbonization strategies.

Acknowledgements

- The EU CETpartnership programme
- Project partners:
 - Åbo Akademi University (coordinator), Finland
 - KTH Royal Institute of Technology, Sweden
 - University of Zaragoza, Spain
 - Andritz Oy, Finland
 - International Paper Inc., USA
 - Valmet Technologies Oy, Finland
 - Valmet Ab, Sweden

