

BECCS potential in the pulp and paper industry: Technical and practical considerations for oxyfuel firing in Kraft recovery boilers

Michael Greencorn, Markus Engblom, Emil Vainio, Patrik Yrjas, and Shareq Mohd Nazir

Introduction

- ▲ Pulp and paper industries (PPI) represent a source of biogenic CO₂ emissions
 - ▲ Ca. 92 Mt-CO₂/y in Europe [1], 101 Mt-CO₂/y in USA [2]

- ▲ Sequestering biogenic CO₂ from PPI can provide net-negative emissions as a BECCS system.
 - ▲ ~150-1200 Gt-CO₂ forecast for BECCS removal by 2100 [3]
 - ▲ ~2.5-20 Gt/y over 2040-2100

Introduction

- ▲ Pulp mill point source emissions:
 - ▲ ~15% from Multifuel boiler: combustion of bark, wood wastes, WWT sludge, etc. for energy/steam
 - ▲ ~75% from Recovery boiler: combustion of black liquor (biomass waste) for process steam, power, and recovery of pulping chemicals
 - ▲ ~10% Lime kiln: Burn fossil or biogenic fuels for regeneration of pulping chemicals.
 - ▲ Recovery boiler is largest source of CO₂ emissions
- ▲ Examine CCS applications for a Recovery Boiler, focusing on aspects of oxyfuel combustion

Methodology

- System boundary includes only recovery boiler, CCS process, and steam turbine
- ▲ Reference recovery boiler based on 2000 adt/d market pulp mill emitting 1.5 Mt-CO₂/y [4]
 - ▲ Includes specification of black liquor composition and flow rate
- Recovery boiler performance calculated by established TAPPI industry standards [5]
- ▲ Process simulation conducted in AspenPlus

Reference Recovery Boiler (RefRB)

- ▲ Black liquor input:
 - ▲ 4473 tDS/d
 - ▲ 82%m DS
 - ▲ 14.4 MJ/kgDS HHV
- ▲ Flue gas generated:
 - ▲ 4.94 kg/kgDS
 - ▲ 11.5%v CO₂
 - ▲ 3.0%v O₂
- ▲ HP steam:
 - **▲ 2.784** kg/kgDS
 - ▲ **766.8** kWh_e/tDS in a turbine

Steam Properties	Temperature	Pressure
High pressure	505 °C	103 bar
Intermediate pressure	352 °C	30 bar
Medium pressure	200 °C	13 bar
Low pressure	154 °C	4.2 bar

Post-combustion (PostC)

Pre-combustion (PreC)

[7] Ekbom et al. (2005)

[8] Kapetaki et al. (2015)

Åbo Akademi

Oxyfuel combustion (Oxy)

- ▲ Oxyfuel mixture 25%v O₂:75%v CO₂
 - ▲ FGR ratio: 0.813

Recovery Boiler CCS

Recovery Boiler CCS Summary

Post-Combustion	Pre-Combustion	Oxyfuel
Highest CCS energy penalty	Lowest CCS energy penalty	Energy penalty highly dependant on ASU efficiency
Significant loss of LP steamCould impact mill	Process heat integration/recovery generates additional MP steam	Negligible reduction in HP steam production
Additional capture system equipment; no modification of RB	Highly complex, complete replacement of RB	Integration of ASU and FGR requires boiler redesign
Minimal impact on smelt recovery expected	Entirely different smelt recovery process required	Unknown impact on smelt recovery processes
Sequestered gas >96% CO ₂	Sequestered gas >96% CO ₂	Sequestered gas quality may be problem for transport/storage

Oxyfuel Sensitivity - Boiler

HP Steam production [%m]

Oxyfuel Sensitivity - CCS

Conclusions

- Oxyfuel combustion has specific CCS energy penalties comparable to postcombustion
 - ▲ 7% or 20kWh/tCO₂ < MEA
 - ▲ Less impact on LP process steam consumption, requires modification/redesign of boiler
- Oxyfuel combustion process preserves RB smelt recovery function
 - ▲ Ongoing research to determine effects of CO₂, O₂, and H₂O concentration on boiler chemical recovery reactions
- ▲ Boiler oxyfuel conditions are influenced by FGR, fuel HHV, and BLDS%
 - ▲ Other parameters have smaller effect
- ▲ O₂ and N₂ content in gas for sequestration have negative impact on compression for pipelining
 - ▲ 5% flue O_2 increases \dot{W}_{comp} by 13%
 - ▲ 7% air infiltration increases \dot{W}_{comp} by 45%
 - ▲ A compression and purification unit (CPU) may be required

Acknowledgements

- ▲ Research supported by the Clean Energy Transition Partnership (CETP) Oxy-Kraft RB project (Cetp-2022-00110) co-funded by the European Union.
- ▲ The Swedish partners are funded by the Swedish Energy Agency via project number P2023-00972.
- ▲ The Finnish partners are funded via Business Finland via project number 2625/31/2023.
- ▲ Follow project updates at: https://blogs2.abo.fi/oxykraft/

References

- [1] Lipiäinen, S., Apajalahti, E.-L., & Vakkilainen, E. (2023). Decarbonization Prospects for the European Pulp and Paper Industry: Different Development Pathways and Needed Actions. *Energies*, 13, 746. doi:10.3390/en16020746
- [2] US EPA. (2022). Greenhouse Gas Reporting Program (GHGRP). GHGRP 2022: Pulp and Paper. U.S. Environmental Protection Agency Office of Atmospheric Protection. Retrieved Jan 7, 2025, from Available at www.epa.gov/ghgreporting
- [3] IPCC, 2018: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24, doi:10.1017/9781009157940.001.
- [4] Onarheim, K., Kangas, P., Kaijaluoto, S., Hankalin, V., & Santos, S. (2016). *Techno-Economic Evaluation of Retrofitting CCS in a Market Pulp Mill and An Integrated Pulp and Board Mill*. Cheltenham, UK: IEAGHG.
- [5] TAPPI. (2007). TIP 0416-01 Recovery boiler performance calculation short form. Technical Association of the Pulpland Paper Industry.
- [6] Madeddu, C., Errico, M., & Baratti, R. (2019). CO2 Capture by reactive absorption-stripping modeling, analysis and design. Springer International Publishin. https://doi.org/10.1007/978-3-030-04579-1
- [7] Ekbom, T., Berglin, N., & Lögdberg, S. (2005). Black Liquor Gasification with Motor Fuel Production BLGMF II.
- [8] Kapetaki, Z., Brandani, P., Brandani, S., Ahn, H., (2015). *Process simulation of a dual-stage Selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant*, International Journal of Greenhouse Gas Control (39), pp. 17-26, doi: 10.1016/j.ijggc.2015.04.015.

