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Introduction
▴Pulp and paper industries (PPI) represent a source of biogenic 

CO2 emissions

▴Ca. 92 Mt-CO2/y in Europe [1], 101 Mt-CO2/y in USA [2]

▴Sequestering biogenic CO2 from PPI can provide net-negative 
emissions as a BECCS system.

▴~150-1200 Gt-CO2 forecast for BECCS removal by 2100 [3] 

▴~2.5-20 Gt/y over 2040-2100

[1] Lipiäinen et al. (2023)
[2] US EPA (2022)
[3] IPCC (2018)



Introduction
▴Pulp mill point source emissions:

▴~15% from Multifuel boiler: combustion of bark, wood wastes, WWT 
sludge, etc. for energy/steam

▴~75% from Recovery boiler: combustion of black liquor (biomass waste) 
for process steam, power, and recovery of pulping chemicals

▴~10% Lime kiln: Burn fossil or biogenic fuels for regeneration of pulping 
chemicals.

▴Recovery boiler is largest source of CO2 emissions

▴Examine CCS applications for a Recovery Boiler, focusing on 
aspects of oxyfuel combustion



Methodology
▴System boundary includes only recovery boiler, CCS process, 

and steam turbine

▴Reference recovery boiler based on 2000 adt/d market pulp mill 
emitting 1.5 Mt-CO2/y [4]

▴Includes specification of black liquor composition and flow rate

▴Recovery boiler performance calculated by established TAPPI 
industry standards [5]

▴Process simulation conducted in AspenPlus

[4] Onarheim et al. (2016)
[5] TAPPI (2007)



Reference Recovery Boiler 
(RefRB)

Smelt
(Na2S + Na2SO4 + Na2CO3 +…)

Air 
(O2 + N2)

Black liquor

Feedwater

Process Steam

Flue gas 
(CO2 + N2 + H2O)

1103°C

▴Black liquor input: 
▴4473 tDS/d
▴82%m DS
▴14.4 MJ/kgDS HHV

▴Flue gas generated: 
▴4.94 kg/kgDS
▴11.5%v CO2

▴3.0%v O2

▴HP steam:
▴2.784 kg/kgDS
▴766.8 kWhe/tDS in a turbine Steam Properties Temperature Pressure

High pressure 505 ℃ 103 bar
Intermediate pressure 352 ℃ 30 bar
Medium pressure 200 ℃ 13 bar
Low pressure 154 ℃ 4.2 bar



Post-combustion (PostC)

RB

Combustion 
air

Black Liquor 
(biomass)

Compression
309 kJ/kgCO2

CO2 for CCS

MEA 
ABS

[6]
HX

MEA 
STR

Flue exhaust 
1.3%v CO2

Lean MEA 
0.3 molCO2/molMEA

Rich MEA 
0.5 molCO2/molMEA

MEA Reboiler
3.73 GJ/tCO2

HP Steam

LP Steam

[6] Madeddu et al. (2019)
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Oxyfuel combustion (Oxy)

Compression
415 kJ/kgCO2

CO2 for CCS

Black Liquor 
(biomass)

ASU
O2

HP Steam1103°C

Dry Flue Gas Recycling
(FGR)

Flue gas drying

▴Oxyfuel mixture 25%v O2:75%v CO2
▴FGR ratio: 0.813
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Recovery Boiler CCS Summary
Post-Combustion Pre-Combustion Oxyfuel

Highest CCS energy penalty Lowest CCS energy penalty Energy penalty highly dependant 
on ASU efficiency

Significant loss of LP steam
• Could impact mill

Process heat integration/recovery 
generates additional MP steam

Negligible reduction in HP steam 
production

Additional capture system 
equipment; no modification of RB

Highly complex, complete 
replacement of RB

Integration of ASU and FGR 
requires boiler redesign

Minimal impact on smelt recovery 
expected

Entirely different smelt recovery 
process required

Unknown impact on smelt 
recovery processes 

Sequestered gas >96% CO2 Sequestered gas >96% CO2 Sequestered gas quality may be 
problem for transport/storage



Oxyfuel Sensitivity - Boiler
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Conclusions
▴Oxyfuel combustion has specific CCS energy penalties comparable to post-

combustion 
▴7% or 20kWh/tCO2 < MEA
▴ Less impact on LP process steam consumption, requires modification/redesign of boiler

▴Oxyfuel combustion process preserves RB smelt recovery function
▴Ongoing research to determine effects of CO2, O2, and H2O concentration on boiler chemical 

recovery reactions

▴Boiler oxyfuel conditions are influenced by FGR, fuel HHV, and BLDS% 
▴Other parameters have smaller effect

▴O2 and N2 content in gas for sequestration have negative impact on 
compression for pipelining
▴5% flue O2 increases ሶWcomp by 13%

▴7% air infiltration increases ሶWcomp by 45%
▴A compression and purification unit (CPU) may be required
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